Release activity-dependent control of vesicle endocytosis by the synaptic adhesion molecule N-cadherin
نویسندگان
چکیده
At synapses in the mammalian brain, continuous information transfer requires the long-term maintenance of homeostatic coupling between exo- and endocytosis of synaptic vesicles. Because classical endocytosis is orders of magnitude slower than the millisecond-range exocytosis of vesicles, high frequency vesicle fusion could potentially compromise structural stability of synapses. However, the molecular mechanisms mediating the tight coupling of exo- and endocytosis are largely unknown. Here, we investigated the role of the transsynaptic adhesion molecules N-cadherin and Neuroligin1 in regulating vesicle exo- and endocytosis by using activity-induced FM4-64 staining and by using synaptophysin-pHluorin fluorescence imaging. The synaptic adhesion molecules N-cadherin and Neuroligin1 had distinct impacts on exo- and endocytosis at mature cortical synapses. Expression of Neuroligin1 enhanced vesicle release in a N-cadherin-dependent way. Most intriguingly, expression of N-cadherin enhanced both vesicle exo- and endocytosis. Further detailed analysis of N-cadherin knockout neurons revealed that the boosting of endocytosis by N-cadherin was largely dependent on preceding high levels of vesicle release activity. In summary, regulation of vesicle endocytosis was mediated at the molecular level by N-cadherin in a release activity-dependent manner. Because of its endocytosis enhancing function, N-cadherin might play an important role in the coupling of vesicle exo- and endocytosis.
منابع مشابه
The Adhesion Molecule CHL1 Regulates Uncoating of Clathrin-Coated Synaptic Vesicles
In searching for binding partners of the intracellular domain of the immunoglobulin superfamily adhesion molecule CHL1, we identified the clathrin-uncoating ATPase Hsc70. CHL1 gene ablation resulted in reduced targeting of Hsc70 to the synaptic plasma membrane and synaptic vesicles, suggesting CHL1 as a synapse-targeting cue for Hsc70. CHL1 accumulates in presynaptic membranes and, in response ...
متن کاملActivity-Regulated N-Cadherin Endocytosis
Enduring forms of synaptic plasticity are thought to require ongoing regulation of adhesion molecules, such as N-cadherin, at synaptic junctions. Little is known about the activity-regulated trafficking of adhesion molecules. Here we demonstrate that surface N-cadherin undergoes a surprisingly high basal rate of internalization. Upon activation of NMDA receptors (NMDAR), the rate of N-cadherin ...
متن کاملMechanism of Activity-Dependent Cargo Loading via the Phosphorylation of KIF3A by PKA and CaMKIIa
A regulated mechanism of cargo loading is crucial for intracellular transport. N-cadherin, a synaptic adhesion molecule that is critical for neuronal function, must be precisely transported to dendritic spines in response to synaptic activity and plasticity. However, the mechanism of activity-dependent cargo loading remains unclear. To elucidate this mechanism, we investigated the activity-depe...
متن کاملControl of synaptic vesicle endocytosis by an extracellular signalling molecule
Signalling cascades control multiple aspects of presynaptic function. Synaptic vesicle endocytosis was assumed to be exempt from modulation, due to its essential role maintaining synaptic vesicle supply and thus neurotransmission. Here we show that brain-derived neurotrophic factor arrests the rephosphorylation of the endocytosis enzyme dynamin I via an inhibition of glycogen synthase kinase 3....
متن کاملThe neural cell adhesion molecule NCAM promotes maturation of the presynaptic endocytic machinery by switching synaptic vesicle recycling from AP3- to AP2- dependent mechanism in mice (Mus musculus, strain
Zusammenfassung I. Abstract/Zusammenfassung The neural cell adhesion molecule NCAM promotes maturation of the presynaptic endocytotic machinery by switching synaptic vesicle recycling from AP3 to AP2-dependent mechanisms Newly formed synapses undergo maturation during ontogenetic development via mechanisms that remain poorly understood. We show that maturation of the presynaptic endocytic machi...
متن کامل